Confounding Effect of Flow on Estuarine Response to Nitrogen Loading
نویسندگان
چکیده
The total maximum daily load ~TMDL! concept provides the basis for regulating pollution load from riverine sources to impaired water bodies. However, load is comprised of two components: flow and concentration. These two components may have confounding, or even conflicting, effects on waterbody attributes of concern. This is particularly the case for dynamic, advective systems, such as estuaries. Resolving these components is critical for properly predicting the response of impaired systems to watershed management actions. The Neuse River Estuary in North Carolina is an example of such an impaired system. Nitrogen has been identified as the pollutant of concern, and the process of developing a TMDL for nitrogen is underway. We, therefore, analyze the extensive data that have been collected for the Neuse River and estuary to investigate spatiotemporal relationships between river flow, riverine total nitrogen ~TN! inputs, water temperature, dissolved inorganic nitrogen concentration, algal density, and primary productivity. Results support the belief that phytoplankton in the estuary are under substantial riverine control. However, the riverine TN concentration alone has only a minor role in determining estuarine chlorophyll aI concentration. River flow has a stronger influence, likely through its effects on down-estuary nitrogen delivery, residence time, salinity, and turbidity. These results imply that using riverine nitrogen load as the metric to evaluate watershed nutrient management may not be appropriate. While nitrogen controls should reduce loads in the long term, in the short term, river flow is the dominant component of load and has the opposite effect of nitrogen on algae at the up-estuary locations. DOI: 10.1061/~ASCE!0733-9372~2004!130:6~605! CE Database subject headings: Eutrophication; Models; Streamflow; River systems; Estuaries; Water quality; North Carolina;
منابع مشابه
Regulation of estuarine primary production by watershed rainfall and river flow
Enhanced phytoplankton production and algal blooms, symptoms of eutrophication, are frequently caused by elevated nutrient loading, usually a s nitrogen, to coastal waters. This nitrogen is derived primarily from anthropogenic sources (urban, industrial, and agricultural) but is delivered to coastal waters through meteorological and hydrological means. We utilized a 4 yr monthly data set to inv...
متن کاملEstuarine classification and response to nitrogen loading: Insights from simple ecological models
Estuaries exhibit a large range in their responses to nitrogen loadings determined in part by characteristics of the driver, such as magnitude and frequency, but also by such intrinsic characteristics as physical/chemical factors (e.g., depth, volume, hypsometry, salinity, turbidity) and biological factors (e.g., nature of ecological communities, trophic interactions). To address the richness o...
متن کاملSpatial and temporal trends in summertime climate and water quality indicators in the coastal embayments of Buzzards Bay, Massachusetts
Degradation of coastal ecosystems by eutrophication is largely defined by nitrogen loading from land via surface and groundwater flows. However, indicators of water quality are highly variable due to a myriad of other drivers, including temperature and precipitation. To evaluate these drivers, we examined spatial and temporal trends in a 22-year record of summer water quality data from 122 stat...
متن کاملExploring estuarine nutrient susceptibility.
The susceptibility of estuaries to nutrient loading is an important issue that cuts across a range of management needs. We used a theory-driven but data-tested simple model to assist classifying estuaries according to their susceptibility to nutrients. This simple nutrient-driven phytoplankton model is based on fundamental principles of mass balance and empirical response functions for a wide v...
متن کاملNitrogen and phosphorus attenuation within the stream network of a coastal, agricultural watershed.
Streams alter the concentration of nutrients they transport and thereby influence nutrient loading to estuaries downstream; however, the relationship between in-stream uptake, discharge variability, and subsequent nutrient export is poorly understood. In this study, in-stream N and P uptake were examined in the stream network draining a row-crop agricultural operation in coastal North Carolina....
متن کامل